Posted on 2 Comments

TEXT and VARCHAR inefficiencies in your db schema

The TEXT and VARCHAR definitions in many db schemas are based on old information – that is, they appear to be presuming restrictions and behaviour from MySQL versions long ago. This has consequences for performance. To us, use of for instance VARCHAR(255) is a key indicator for this. Yep, an anti-pattern.

VARCHAR

In MySQL 4.0, VARCHAR used to be restricted to 255 max. In MySQL 4.1 character sets such as UTF8 were introduced and MySQL 5.1 supports VARCHARs up to 64K-1 in byte length. Thus, any occurrence of VARCHAR(255) indicates some old style logic that needs to be reviewed.

Why not just set the maximum length possible? Well…

A VARCHAR is subject to the character set it’s in, for UTF8 this means either 3 or 4 (utf8mb4) bytes per character can be used. So if one specifies VARCHAR(50) CHARSET utf8mb4, the actual byte length of the stored string can be up to 200 bytes. In stored row format, MySQL uses 1 byte for VARCHAR length when possible (depending on the column definition), and up to 2 bytes if necessary. So, specifying VARCHAR(255) unnecessarily means that the server has to use a 2 byte length in the stored row.

This may be viewed as nitpicking, however storage efficiency affects the number of rows that can fit on a data page and thus the amount of I/O required to manage a certain amount of rows. It all adds up, so having little unnecessary inefficiencies will cost – particularly for larger sites.

VARCHAR best practice

Best practice is to set VARCHAR to the maximum necessary, not the maximum possible – otherwise, as per the above, the maximum possible is about 16000 for utf8mb4, not 255 – and nobody would propose setting it to 16000, would they? But it’s not much different, in stored row space a VARCHAR(255) requires a 2 byte length indicator just like VARCHAR(16000) would.

So please review VARCHAR columns and set their definition to the maximum actually necessary, this is very unlikely to come out as 255. If 255, why not 300? Or rather 200? Or 60? Setting a proper number indicates that thought and data analysis has gone into the design. 255 looks sloppy.

TEXT

TEXT (and LONGTEXT) columns are handled different in MySQL/MariaDB. First, a recap of some facts related to TEXT columns.

The db server often needs to create a temporary table while processing a query. MEMORY tables cannot contain TEXT type columns, thus the temporary table created will be a disk-based one. Admittedly this will likely remain in the disk cache and never actually touch a disk, however it goes through file I/O functions and thus causes overhead – unnecessarily. Queries will be slower.

InnoDB can store a TEXT column on a separate page, and only retrieve it when necessary (this also means that using SELECT * is needlessly inefficient – it’s almost always better to specify only the columns that are required – this also makes code maintenance easier: you can scan the source code for referenced column names and actually find all relevant code and queries).

TEXT best practice

A TEXT column can contain up to 64k-1 in byte length (4G for LONGTEXT). So essentially a TEXT column can store the same amount of data as a VARCHAR column (since MySQL 5.0), and we know that VARCHAR offers us benefits in terms of server behaviour. Thus, any instance of TEXT should be carefully reviewed and generally the outcome is to change to an appropriate VARCHAR.

Using LONGTEXT is ok, if necessary. If the amount of data is not going to exceed say 16KB character length, using LONGTEXT is not warranted and again VARCHAR (not TEXT) is the most suitable column type.

Summary

Particularly when combined with the best practice of not using SELECT *, using appropriately defined VARCHAR columns (rather than VARCHAR(255) or TEXT) can have a measurable and even significant performance impact on application environments.

Applications don’t need to care, so the db definition can be altered without any application impact.

It is a worthwhile effort.

Posted on 2 Comments